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Methods so far proposed for identifying gross error sources in making a one-component mass 
balance are compared for their effectiveness and the work load involved. Causes of failure of some 
of the methods are discussed. An approach in which arrangement of normalized adjustments 
is coupled with successive elimination of measured quantities is recommended as the preferred 
method. 

One of the first steps in testing the performance of chemical plants is to set up a mass 
balance on the basis of measured data. If redundant measurements are present, 
statistical methods may be applied to find out whether the measured data are sub­
ject to any gross and systematic errors. Ifthe occurrence of such errors is ascertained, 
other methods may be used to identify measurements suspect on this count, and 
causes of gross errors may subsequently be determined1• Such a procedure is spoken 
of as identification of gross error sources. In this communication we shall compare 
methods which have been proposed for identifying gross error sources. In doing so, 
we shall consider a one-component mass balance, but most conclusions will apply 
to a multi-component balance as well. 

BALANCE PROBLEM 

Let us consider J balance nodes, N j , j = 1,2, ... J and I oriented streams, Hi = 

= 1,2, ... , I. The flows in the individual streams will be denoted as Xi. The J-th 
node usually represents the environment, whose inlet and outlet streams connect 
the other, so-called technological nodes with the environment. A total of (J-l) 
independent balance equations may be written for the individual nodes. 

Fig. 1 shows a balance scheme consisting of technological nodes 1', 2', 3' and 4' 
and streams 1, 2, ... , 9. For clarity, node 5' representing the environment with outlet 
stream 1 and inlet streams 6, 7 and 9 is omitted from the Fig. 1. 

A total of four linearly independent balance equations may be written for the 
balance nodes shown in Fig. 1. 

(1) 
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(2) 

(3) 

(4) 

The fifth equation relating to the environment node is dependent on these four 
equations. Eqs (I) to (4) may conveniently be written in the matrix form 

Ax = 0, (5) 

where A is the so-called reduced incidence matrix of the balance scheme diagram. 
The elements of a (J-l) x I reduced incidence matrix are equal to 0, 1, or -1, ac­
cording to the rule 

A ji when stream i enters node j 

A ji - 1 when stream i leaves node j 

A ji = 0 in other cases (i.e. when stream i is not connected with node j). 

Matrix A is called reduced because it does not contain the row relating to the environ­
ment node. The reduced incidence matrix for the scheme shown in Fig. 1 is r -I -I 1 0 0 0 0 

0) A = 0 1 0 o -\ -1 0 \ 0 
000 -\ 1 0 -1 o 0 
o 0 1 0 0 0 0 -\ -1 

CLASSIFICATION OF STREAMS 

According to whether or not a stream is measun:d directly we distinguish directly 
measured and directly unmeasured streams. Some directly measured streams are 

11(,. I 

Balance scheme 

------------------- ----------- ~.-----
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redundant in the sense that in the absence of measurement errors they could be 
unambiguously calculated from values of the remaining directly measured streams. 
Directly measured streams that are not redundant are called just determined. Directly 
unmeasured streams are divided into determinable, which can be calculated from 
directly measured streams, and indeterminable, which cannot be calculated. De­
terminable unmeasured streams are also called indirectly measured. Some measure­
ments may be incomparably more accurate than others; such streams will be called 
exactly known. 

The above given classification of streams may easily be carried out in the case 
of a one-component balance. There are two rules 7 : 

Rule 1: Let stream Hm linking nodes N j and Nk be measured. The measurement 
of stream Hm is redundant just when nodes N j and Nk are not connected by a path 
of unmeasured streams (the path is a sequence of streams H 1 , H2 , • •• , Hn such that 
the nodes connected by stream Hi are linked to streams Hi -1 and Hi + 1 for i = 

= 2,3, ... ,n - 1). 

Rule 2: A directly unmeasured stream is indeterminable just when it is found 
on a circuit of directly unmeasured streams (by the circuit we mean a closed path 
of streams, with the initial node of the path identical with the final node). 

Fig. 2a shows a choice of directly measured streams. Here, stream H 4, for instance, 
is indeterminable because it occurs on a circuit of unmeasured streams H 2, H 4 and H s. 

5' 

7' 6 9 

a) b) 

d) 

c) 

FIG. 2 

Balance scheme reduction. -~ directly measured stream; .----- directly unmeasured stream 
- - ... --.~.- ..... --. -~~--- ----~--- _. ------ ._-----
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Balance Measurements 431 

Similarly, stream HI is just determined because its nodes NI and N~ are connected 
through path H4 and H7 • 

The set of redundant measurements may be found as follows. Combining nodes 
connected through directly unmeasured streams, we finally obtain a simplified balance 
scheme containing directly measured streams only. All redundant direct measure­
ments can be found in this way. Directly measured streams eliminated in combining 
the nodes are just determined measured streams. 

A balance scheme simplified in this way is said to be reduced, and the process 
of balance scheme simplification is called reduction2 (it should be pointed out that 
these terms have nothing in common with the concept of reduced incidence matrix 
of balance scheme). 

Balance scheme reduction for the given choice of directly measured streams is 
represented in Figs 2b, c and d, where streams 3,8 and 9 are seen to be redundant. 

MATHEMATICAL MODEL 

Denoting the vectors of directly measured flows, directly unmeasured flows and 
exactly known flows by Xl' x2 and X 3 , respectively, we can write Eq. (5) in the form 

(6) 

where AI' A2 and A3 are the incidence matrices of directly measured, directly un­
measured and exactly known streams, respectively. As the product A3X3 is a known 
constant, we can replace it in Eq. (6) by a constant vector Q. 

(7) 

We shall now confine ourselves to the case, where no indeterminable quantities are 
present and, in addition, at least some of the directly measured quantities are redun­
dant. Where this case arises may be seen from the classification rules given in the 
preceding section. The conditions for the validity of these assumptions may, in ad­
dition, be expressed in terms of the ranks of matrices Al and A2 • 

Eq. (7) holds true for actual values of vectors Xl and X 2 • The actual value of vector 
X I is related to result of direct measurement xi by 

(9) 

where e is the vector of measurement errors. Information on unknown errors of 
measurement is varied. In some cases, it may be assumed that the elements of vec-
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tor e are realizations of random quantities with zero mean and known variance, 

E(e;) = 0, Vee;) = O"~ • (10) 

Sometimes, maximum errors of measurements are known (e.g. as accuracy classes 
of the measurement devices). Denoting bye;" the maximum measurement error 
in i-th quantity, we may define the standard deviation of this error as 

0"; = ke;" k E <t/2; 1/3) . (11) 

The value k = 1/3 is chosen for reliable measurements where errors greater than 
e;" may practically be ruled out. In ordinary cases, k = 1/2 may be recommended. 

ADJUSTMENT OF REDUNDANT MEASUREMENTS 

If redundant measurements are present, Eq. (7) is mostly not exactly satisfied by the 
measured values. We then solve the problem of adjustment of redundant measure­
ments, by searching for a vector of adjusted values Xl given by 

... + 
XI = Xl + v, 

where v is the vector of adjustments. The requirements are that the adjusted values 
il exactly satisfy Eq. (7) and that the adjustments be minimal in a sense. The most 
frequent procedure is to minimize the expression 

II 

Q ,,2-2 = t... V; 0"; 
;=1 

which may be written in matrix notation as 

(12) 

(13) 

where F is the diagonal matrix with variances of measurements O"~ in the diagonal. 
The solution to this problem (the so-called generalized least squares problem) 
is obtained by solving the following set of equationsS 

(14) 

(! 5) 

(16) 
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Balance Measurements 433 

where k is the vector of Lagrangian multipliers, and x 2 is the vector of estimates 
of directly unmeasured quantities. We first solve Eq. (14) 

(17) 

and substitute k into Eq. (15). 

If unmeasured streams are not present, mathematical model (7) simplifies to 

(18) 

It is useful to realize that this model is arrived at by reduction of balance scheme 
(matrix Al is the reduced incidence matrix of reduced balance scheme, and Xl is the 
vector of all redundant direct measurements). In this case, the adjustment is of the 
simple form 

(19) 

(20) 

Since only redundant, directly measured quantities are of importance for identification 
of gross errors of measurement, it suffices to deal with model (18) only. All the infor­
mation acquired from this model is equivalent to that which would be obtained 
by solving the general model (7). In what follows a mathematical model of the form 
of Eq. (18) will therefore be considered; this implies that either all the streams have 
been measured or, if unmeasured streams are present, the corresponding reduction 
of balance scheme has been carired out. 

We shall now present important probability properties of the vectors X I and v 
and of the quantity Q, assuming that the measurement errors possess the I-variate 
normal distribution e ~ N[ (0, F). The covariance matrices of the vectors v and Xl 
areS 

(21) 

(22) 

Q is the realization of a random variable with X2 distribution having v degrees of free­
dom, where v is the number oflinearly independent equations in set (18). 

Another important concept is that of residuals, r, of Eq. (18). 

(23) 
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The mean value of the residuals is zero, and their covariance matrix is given by 

(24) 

As in the case of Xl and v, the distribution of the residuals is normal. 

DETECTION OF GROSS ERRORS OF MEASUREMENT 

By a gross error we mean one whose magnitude does not fit into our picture of the 
magnitude of random error variance. It is customary to consider as gross error one 
which is greater in absolute value than three times the standard deviation of random 
error. 

The presence of a gross error may be inferred from essentially three types of infor­
mation - adjustments, residuals, and the value of Q. If no error is present, all the 
three quantities are zero. If only random errors occur, the quantities should lie, 
with a given probability, within limits determined by the distribution of the given 
random quantity. 

In detecting the presence of a gross error, a suitable criterion is the value of the 
quantity Q. The hypothesis that a gross error is absent (hypothesis Ho) will be reject­
ed if 

(25) 

where xi _",(v) is the 100(1 - a) percentile of X2(v) distribution. The probability a 
is the probability of rejecting the hypothesis when it is true (error of the first kind). 
Conversely, we may, with probability y, make an error of the second kind by not 
rejecting hypothesis Ho when it is false. The value p = 1 - y is called the power 
of a test, and the dependence of p on the magnitude of gross error is the power curve 
of the test. 

IDENTIFICATION OF GROSS ERROR SOURCE 

The methods of identifying measurements subject to gross errors are based on the 
fact that a gross error will propagate in a characteristic manner into adjustments 
of the various measured quantities and into residuals of the individual equations. 
It should be borne in mind. however, that the propagation is characteristic in a sto­
chastic sense only (the errors cannot be rigorously calculated from the adjustments 
or residuals). We shall now discuss the three methods most frequently employed 
in identifying gross error sources. For simplicity, we shall consider the occurrence 
of a single error. The method may be applied to cases where several gross errors occur 
simultaneously but their effectiveness falls off rapidly as the number of gross errors 
increases. 
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Balance Measurements 435 

Analysis of Adjustments 

The magnitudes of the individual adjustments depend on three factors: 

assumed variances of measurements (the variance is the greater the larger the 
adjustment) 

the structure of the mathematical model 

particular values of measurement errors. 

In order to isolate the last named effect, normalization of adjustments is carried 
out in such a way as to achieve a compensation of the first two effects. The adjust­
ments are random quantities with a covariance matrix given by Eq. (21). By finding 
the square roots of the diagonal elements of matrix Fy , we obtain standard deviations 
of the adjustments, o'VI :II: (FViJ)1/2. Forming the ratios 

W· = v./o' , 1 1 Vt (26) 

we obtain a vector of quantities with standard normal distribution. Experience 
shows that the quantity WI is a suitable indicator of the presence of gross error 
in i-th quantity. If some measurement is subject to gross error, the absolute value 
of Wi for this quantity ranks among the highest. By simply arranging the w/s in order 
of their magnitudes, we obtain the order of the quantities with respect to their being 
"suspected" of the presence of gross error. 

Adjustments may also be tested for the presence of gross error. The quantities Wi 

have standard normal distribution, and an i-th measured quantity will be suspected 
of the presence of gross error if 

(27) 

where U 1 - a/ 2 is the 100(1 - a12) percentile of the standard normal distribution. 
Usually, a is chosen from the interval (0·01-0·10). It should, however, be realized 
that in contrast to the test based on inequality (25), the probability of error of the 
first kind is not exactly known in this case (because of the larger number of quantities 
under test, the overall probability of this error is greater than a). 

Analysis of Residuals of Mathematical Model Equations 

An important property of the set of balance equations (18) is that each measured 
quantity appears in one or at most two equations. Hence, gross error of a measure­
ment may be expected to give rise to an extreme value of residual for one or two 
equations in which the measurement is present. With this assumption, we can fonnu­
late algorithms for gross error identification, which are based on residuals of balance 
equations and on the balance scheme structure. 
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We shall form the normalized residuals 

(28) 

where o'rj = (FrJJ)1/2. If measurements present in j-th equation are not subject 
to gross error, Zj has the standard normal distribution. The hypothesis that j-th 
equation is free of gross error will be rejected if 

(29) 

If we accept the hypothesis of the presence of gross error in j-th equation, the 
quantities appearing in this equation (i.e., measurements of streams connected 
to the respective balance nOde) are the possible sources of error. A further reduction 
of the set of suspected quantities is achieved by examining pairs of neighbouring 
nodes and pseudo-nodes formed by combining neighbouring nodes. Table I gives, 
in an abbreviated form, an algorithm for identification of measurement subject 
to gross error published by Hlavacek and co-authors.2 

Mah and coworkers 7 have proposed a more complicated method based on the 
following assumptions: 

1) random errors are negligible compared with gross errors 

2) a gross error for a given node occurs if and only if the measurement of stream 
connected with this node is subject to gross error or if there is a significant escape 
of mass from this node to the environment 

3) there is no compensation of errors 

4) all streams are measured 

5) no parallel streams (more streams connecting two nodes) are present. 

Mah and coworkers 7 have demonstrated that with these assumptions, gross errors 
and escape of mass into the environment can be identified provided that the streams 
subject to gross errors do not form a circuit in the given balance scheme. For details 
of this method, the reader is referred to the literature 7 • 

Successive Elimination of Measured Quantities 

Let us assume that the test based on inequality (25) has revealed a gross error and that 
the gross error is the only one present. We shall now successively consider the indi­
vidual directly measured quantities as unmeasured which, in practice, requires 
further reduction of the balance scheme and a change in model (18), and adjust 
the remaining measured values. If listing i-th quantity as unmeasured eliminates 
the gross error, this quantity is suspected of the presence of gross error. 
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It may happen that this procedure will not result in elimination of gross error. 
The most probable explanation then is that more gross errors are present. A logical 
extension of the described algorithm is to list pairs of quantities as unmeasured, 
selecting the pairs preferentially from those quantities for which marked reduction 
in the value of Q was found in the preceding step. 

Comparison of the Methods 

The methods will be compared for their effectiveness in identifying a gross error 
in the balance scheme shown in Fig. 1. This scheme has some features of a typical 
chemical technology process, particularly the presence of recycle and streams of 
different sizes. However, it contains no parallel streams (connecting two nodes) as 
these are known to be indistinguishable from the viewpoint of gross error identi·· 
fication. We shall assume that all streams in Fig. 1 are directly measured with 
a constant relative accuracy. 

Table II gives simulated results of measurements: actual values of Xi' relative 
standard deviations of measurements Yi' standard deviations ai' measurement errors 
C j , and' 'measured" values xi. The errors ei were generated as realizations of random 
quantity with zero mean, standard deviation ai' and normal distribution. The mea­
sured values xi were adjusted by using Eqs (19) and (20). Results of the adjustment 
are summarized in Table III. Q was calculated from Eq. (13) to be 2'27, and hence 
the test based on inequality (25) revealed no gross error at 5% level of significance 
(the critical value of X2 distribution with four degrees of freedom for ex = 0·05 was 
9'49). 

TABLE I 

Algorithm for gross error identification2• 1 - an error indicated; 0 - no error indicated 

Balanced node 
Identification of error 

All streams connected to nodes Ni and N j 

I 0 External stream connected to node Ni 
0 1 External stream connected to node N j 

1 0 0 Contradictory result 
0 1 Internal stream connecting Ni and Nj 

0 0 Contradictory result 
0 0 Contradictory result 
0 0 0 No error in any of the streams 
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The methods of gross error identification were tested as follows. Gross errors 
were added to values of xi given in Table II successively for i = 1,2, ... ,9, for each i 
at four levels, namely + 5ui , + 10ui , + 15uj and + 20uj • The relative standard devia­
tions were assumed to be 2% of the actual values, and hence the gross errors lay within 
10 to 40% of the actual values of the measured quantity. The data so obtained were 
adjusted by using Eqs (19) and (20). The normalized adjustments were calculated 
from Eq. (26), and the normalized residuals were obtained from Eq. (28). The pre­
sence of gross error was tested by applying inequality (25). If a gross error was de-

TABLE II 

Input data 

TABLE III 

Adjusted values 

i 

2 

3 
4 
5 
6 
7 
8 
9 

xi Yj 

kg s-1 % 

100 2 
90 2 
20 2 
10 2 
15 2 
80 2 
5 2 
5 2 

15 2 

Xj 

kg s-I 

101·58 
2 91'72 
3 20·18 .. 10'33 
5 15·24 
6 81·54 
7 4'913 
8 5'057 
9 15'13 

O'j ej x;I" 
I 

kg S-1 kgs- I kg S-1 

2 1·7 101·7 
1·8 1·8 91·8 
0·4 0'3 20'3 
0·2 0·5 10·5 
0·3 -0,1 14·9 
1·6 1·4 81·4 
0·1 -0'05 4·95 
0·1 0'05 5·05 
0'3 0·06 15'06 

Vi "VI Wi kg s-1 kg s-I 

-0,12 1·73 -0,07 
-0'08 1·50 -0,05 
-0'12 0'32 -0·46 
-0,17 0·12 -1,44 

0'34 0·24 1'36 
0'14 1·24 0·11 

-0,037 0·026 -1·43 
0'007 0'020 0'35 
0·07 0·18 0'38 
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tected, the individual normalized adjustments and the normalized residuals were 
tested according to inequalities (27) and (29), respectively (in an cases at (X = 0·05). 

Three methods were used to identify gross error. 

Method 1: Arrangement of normalized adjustments in order of decreasing absolute 
value. In this method, only those normalized adjustments were considered for 
which gross errors were detected by using inequality (27). 

Method 2: Analysis of normalized residuals of balance equations. This approach 
involved two steps. The first step was to identify a set of streams connected to nodes 
for which the test based on inequality (29) revealed the presence of gross errors. 
I n the second step, the range of suspected quantities was reduced by using the algo­
rithm given in Table I. Where this led to contradiction (indicated by "e" in Table IV), 
the set of streams identified in the first step was taken as the result. 

Method 3: Successive elimination of measured quantities. After listing a quantity 
as unmeasured, the remaining data were adjusted. Inequality (25) was applied to test 
the hypothesis that a gross error was absent. 

Results of gross error identification are summarized in Table IV. The first column 
gives the number of stream subject to a gross error whose magnitude is listed in the 
second column. The column headed Q gives values calculated from Eq. (13) for data 
subject to gross errors. The next column lists results of Method 1, presented as 
a sequence of normalized adjustments Wi in order of decreasing magnitude. The fol­
lowing two columns relate to the method of analysis of residuals, one giving the 
nodes and the other the streams in which gross errors were identified. In some cases 
there is contradiction. The last column of the table lists m(awnmmts identifi(d 
by Method 3 as suspected of the presence of gross errors. 

DISCUSSION 

The presence of gross error was detected in streams 1,2, 3,4 and 6 for a gross error 
equal to as little as five times the standard deviation of random error in the given 
quantity. In streams 5,7 and 9, the detectable gross error was ten times, and in stream 
8 twenty times, the standard deviation. 

Arranging the normalized adjustments in order of dec((asing magnitude always 
placed adjustment to the stream subject to gross error as first in the sequence. The 
number of normalized adjustments which exceeded the corresponding critical value 
from inequality (27) ranged between 1 and 5, increasing with the magnitude of gross 
error. 

The method of analysis of residuals was successful in detecting gross errors in six 
cases, but in some of them only when large errors were involved. In the other cases 
there was contradiction as indicated by lines 6 and 7 of Table I. 
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TABLE IV 

Results of methods of gross error identification 
-------

Stream Gross Method I Method 2 Method 3 
number error Q Sequence Gross error Gross error 

-~ -------.-~-

+O"i of wi in stream 
in nodes in streams 

5 18·1 1,5 
10 56·7 1, 6, 2 1, 5 
15 109 1, 6, 2 1,5 
20 171 1, 6, 2, 4 1,5 

2 5 16·8 2,6 1,2 2 2 
10 52'9 2, 6, 1 1, 2 2 2 
15 103 2, 6, 1 1,2 2 2 
20 161 2,6, 1,5 1, 2 2 2 

3 5 18·1 3,9,8 4(C) 3,8,9 3,8.9 

10 54·4 3,9,8 4 (C) 3,8,9 3,8,9 
IS 104 3,9,8 4, 1 3 3 
20 162 3,9,8 4,1 3 3 

4 5 16·1 4,5,7 3(C) 4,5,7 4,5,7 
10 40·7 4,5,7 3 (C) 4,5,7 4,5,7 
IS 74·1 4,5,7 3 (C) 4,5,7 4,5,7 
20 114 4,5, 7 3(C) 4,5, 7 4,5,7 

5 5 5-75 
10 33·2 5,4, 7 3 (C) 4,5,7 4,5,7 
15 76·7 5,4,7 3 (C) 4,5,7 4,5,7 
20 130 5,4, 7 3,2 5 4,5,7 

6 5 14-9 6,7 2,5 6 6 
10 46·7 6, 2, 1, 7 2,5 6 6 
15 92·1 6,2, 1,7,4 2,5 6 6 

7 5 9-35 
10 18·9 7,5,4 3 4,5,7 4,5,7 
IS 31·5 7,5,4 3 4,5,7 4,5,7 
20 47·0 7,5,4 3 4,5,7 4,5,7 

8 5 3-36 
10 5-47 
15 9-44 
20 15-2 8,3,9 4 (C) 3,8,9 3,8,9 

9 5 8·85 
10 28·7 9,3,8 4 (C) 3,8,9 3,8,9 
15 59·7 9,3,8 4 (C) 3,8,9 3,8,9 
20 99·2 9,3,8 4,5 9 9 
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The method of elimination of measured quantities correctly identified five streams 
subject to gross errors, but in three cases only for relatively high values of gross 
error. In the remaining cases the method indicated suspected quantities, always 
in groups of three. 

Comparison of the methods shows that they are not much different in respect 
of their effectiveness in searching for gross error sources. The sets of suspected 
quantities identified by the methods of residual analysis and of elimination of mea­
sured quantities are virtually the same. The method based on values of normalized 
adjustments identifies somewhat larger sets, but its virtue lies in arranging the streams 
according to their suspiciousness. That the actual error source was placed in all 
the cases as first in the sequence must, however, be considered as coincidence. The 
above conclusions are in line with experience from use of the methods in eliminating 
gross errors of measurement in chemical industry practice. 

We shall now examine why the method of analysis of residuals of balance equa­
tions for the individual nodes frequently yields contradictory results. Let us assume 
that measurement of a single stream is subject to gross error. The probability of de­
tecting the gross error by applying inequality (29) to residuals of nodes connected 
by this stream depends on the magnitude of the gross error and on standard devia­
tions of residuals for these nodes. If the standard deviations of the residuals are the 
same, the probabilities of detecting the gross error for the two nodes are approximately 
the same. If, however, the standard deviations differ significantly, the gross error 
will be found preferentially for the node with the smaller standard deviation. This 
is illustrated by the following example. 

The vector of standard deviations of residuals of the balance scheme shown in Fig. 1 

FIG. 3 

Power curves of test for nodes l' and 4' 
and stream 3 
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is 

o'~ = (2'93; 2·47; 0·38; 0·52; 2'78) . 

A significant difference is found, for example, for standard deviations of residuals 
of nodes l' and 4'. The probability of detecting a gross error in stream 3 by applying 
inequality (29) to nodes l' and 4' may be represented by means of a power curve 
of the test (the dependence of the probability of detecting a gross error on its magni­
tude). The power curves for the two nodes are shown in Fig. 3; the gross error in mea­
surement of stream 3 is expressed here as a multiple of the standard deviation 
of stream 3 measurement. The power curves show that the probability of detecting 
a gross error of, say, 100'3 is 97% for node 4' while only 6% for node l' (accordingly, 
the error is not likely to be detected in the latter case). This is consistent with results 
presented in Table IV. Thus, it is seen that if the gross error in stream 3 measurement 
is in a certain interval, it cannot be expected to lead to detection of gro~s errors in both 
the nodes connected with this stream (assumption 2 presented by Mah and co­
workers7). 

When using algorithms based on analysis of residuals, we often arrive at a contra­
diction. In real cases, residuals of balance equations cannot be expected to have 
approximately the same standard deviations; in fact, the reverse is true as a rule, 
and the standard deviations of residuals may differ even by several orders of magni­
tude. 

Comparing the methods under test as to their complexity and the work load 
involved, we arrive at the following conclusions. The least laborious method is that 
based on arrangement of normalized adjustments. The adjustments are available 
from data adjustment, and the same is mostly true for standard deviations of the 
adjustments, which are intermediate results in the calculation of standard deviations 
of the adjusted quantities (see Eq. (22». A disadvantage of the method is that the 
conclusions drawn are not definitive (they give no information as to which quantities 
are sufficient to explain the presence of gross error). 

The methods based on analysis of residuals do not involve adjustment of redundant 
data. However, identification of gross error requires an algorithm program which 
may be quite complicated if it is to be effective. 

The method of elimination of measured quantities involves as many adjustments 
as there are directly measured quantities. In real cases, this may become a limiting 
factor even when the computation saving method described by Ripps3 is taken into 
consideration. 

CONCLUSION 

The case analyzed here in detail, as well as experience from solutions of real problems 
of identifying gross errors of measurements in chemical plants, has shown that the 
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proposed methods are helpful in detecting measurements subject to gross errors. 
It should, however, be borne in mind that only rarely are these methods capable 
of unambiguous identification of the cause of gross error. In most cases, they only 
allow a set of probable sources of error to be delineated, the detailed establishment 
of the gross error source being a matter of analysis of the measuring process itself. 

Among the methods so far proposed for identifying gross errors that based on ar­
rangement of normalized adjustments may be recommended. The results obtained 
may then be refined by the method of elimination of measured quantities applied 
only to quantities which have been singled out by the former method. 

LIST OF SYMBOLS 

ei; e 
F 

Fr 
Fii 

F" 
11(.) 

I 

11.12 
J 

k 

Q 
rj; r 

11 1 -".1/2 

I'i; v 

Wi 

Xi; x 
Xl' X 2 

Zj 

IX 

jJ 

X2( 1') 

xi -a(l') 
V 

reduced incidence matrix of balance scheme 
reduced incidence matrices of directly measured and directly unmeasured quantities, 
respectively 
error in i-th measured quantity; vector of quantities ei 

covariance matrix of measurement errors 
covariance matrix of residuals of balance equations 
covariance matrix of adjusted values 
covariance matrix of adjustments 
rank of matrix 
number of streams 
numbers of directly measured and directly unmeasured streams, respectively 
number of nodes (including the environment node) 
vector of Lagrangian multipliers 
weighted sum of squares of adjustments (Eqs (12) and (13» 
residual of j-th equation; vector of quantities rj 
100(1 - 1X12) percentile of standard normal distribution 
adjustment of i-th measured quantity; vector of quantities Vi 

normalized adjustment (Eq. (26» 
flow through i-th stream; vector of quantities Xi 

vectors of directly measured and directly unmeasured flows, respectively 
normalized residual (Eq. (28» 
significance level of test 
power of test 
random quantity with chi-square distribution and v degrees of freedom 
100(1 - IX) percentile of x2 (v) distribution 
number of degrees of freedom 
standard deviations of quantities ej' r j • and Vj' respectively 

Superscripts and overlays 

measured value 
adjusted value 
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